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Abstract
In order to explore the effect of the geometric phase on the spin-polarized
electron tunnelling in a ferromagnet/insulator/ferromagnet (FM/I/FM) junction,
in this paper, we apply a voltage drop in the insulating layer and allow it
to vary adiabatically with time t . Then the wavefunction will acquire a
geometric phase which will give rise to an observable effect on the physical
quantities of interest. The numerical results indicate that the geometric phase
certainly has an influence on the differential conductance and the tunnelling
magnetoresistance (TMR) in the spin-polarized tunnelling. We also show
results for the conductance and TMR obtained by changing the orientation angle
and the magnitude of the molecular field in the ferromagnets. An experimental
profile for observing the effect of the geometric phase on the spin-polarized
electron transport in a FM/I/FM tunnel junction is suggested.

1. Introduction

Spin-polarized electron tunnelling, since its realization 30 years ago, has been widely
explored both experimentally and theoretically. In particular, the tunnelling through a
ferromagnet/insulator/ferromagnet (FM/I/FM) junction has attracted much more attention [1–
4]. In 1989, Slonczewski [5] proposed a free electron model for analytically studying the
transmission of charge and spin currents flowing through a tunnelling junction. Following
this model, Zhang et al [6, 7] further studied the tunnelling through ferromagnet/insulator
(semiconductor) single and double junctions subject to a dc bias. However, studies of the
theory of time dependent transport through this tunnelling junction are, as far as we are aware,
still rare. We are aware of some papers in the recent past which treat time dependent phenomena
using non-equilibrium Green function (NEGF) theory in mesoscopic physics [8]. A few years
ago, Büttiker and co-workers [9–11] proposed, in the framework of the scattering matrix
approach, an ac transport theory to explain the differential conductance and electrochemical
capacitance in mesoscopic systems. Wang et al [12] further employed this theory to explore the
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ac transport properties in the spin-polarized tunnelling of the FM/I(S)/FM junction. However,
this method, based on the scattering matrix or the NEGF theory, always involves performing
some complicated numerical calculations, so it is worthwhile to develop an explicit time
dependent transport theory and to deal analytically with the spin-polarized tunnelling problem.

The time dependent transport problem can be studied analytically in some special cases—
for instance, when the voltage drop varies adiabatically with time t . As is known, if the
quantum system varies adiabatically, which means that the external probe is slowly turned on,
in accordance with the adiabatic theorem [13], the wavefunction will acquire a geometric
phase [14] in addition to the familiar dynamical phase exp(−iEt/h̄). The effect is also
predicted to occur for spin-polarized tunnelling. In fact, the geometric phase has played an
important role in mesoscopic transport problems. In the past, geometric phases were widely
used to study quantum Hall effects [15] as well as adiabatic quantum electron pumping [16].
Brouwer [17] presented a formula for studying the pumped current based on the theory of
the emissivities of the system proposed by Büttiker et al [18]. Avron [19] further related the
charge in the adiabatic mesoscopic quantum pump to Berry’s phase and the corresponding
Brouwer pumping formula to the curvature. An experiment used interference to directly
measure the geometric phase of scattering states in nanoscale electric devices in a manner
similar to that used to observe quantum adiabatic charge pumping by Zhou et al [20]. It is the
purpose of this paper to investigate the influence of the geometric phase on the spin-polarized
tunnelling transport in the FM/I/FM junction. Our approach is similar to Slonczewski’s, but
the wavefunction is associated with the geometric phase induced by the adiabatic procedure.
The differential conductance associated with the geometric phase can be obtained by matching
the wavefunctions in different regions via the continuity conditions and their derivatives.

The rest of this paper can be outlined as follows. The formalism of the adiabatic quantum
transport for a spin-polarized tunnelling junction will be described in section 2. In section 3,
we shall present our numerical analyses of the differential conductance as well as the tunnelling
magnetoresistance (TMR) under the influence of the geometric phase. Finally, a brief summary
is given in section 4, and the complicated equations for the matching coefficients are given in
the appendix.

2. The general formalism

Consider a FM/I/FM tunnelling junction which is connected by two electron reservoirs
at contacts α = 1, 2. For convenience, we neglect the difference in electron effective
mass of the barrier and ferromagnets, and treat both masses as the bare electron mass m.
The system consists of left and right ferromagnet layers with semi-infinite width, and an
insulating layer with a thickness d which is between the two ferromagnet layers. The
magnitudes of the molecular fields associated with the left and right ferromagnet layers
are assumed to be h1 and h2, and the barrier height in the insulator is supposed to be
U . To see the effect of the geometric phase on the spin-polarized tunnelling transport, a
voltage drop V (x, t), which varies with position x and adiabatically with time t , is applied
in the insulator layer. In fact, this voltage drop is just a special case of a two-parameter
pumping. This kind of pumping had been discussed clearly in the paper of Usmani et al
[21] for the classical case. In their paper, the pumping can be chosen as the perturbation:
�V (x, T (t)) = −VA cos(2πx/a) cos(ωt)− VB cos(2πx/a + χ) cos(ωt + ϕ), which is similar
to the potential adopted in our system,where we chose VA = −V0, VB = V0 and χ = ϕ = π/2.
Certainly, this voltage drop must be adiabatically turned on in order to preserve the adiabatic
transport in the FM/I(S)/FM tunnelling junction. Then the wavefunction in the insulator will
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acquire a geometric phase γ (x, t) during this adiabatic procedure:

�(x, t) = exp(−iEt/h̄) exp(iγ (x, t))uE(x, t), (1)

where the geometric phase γ (x, t) takes a form as in [14]:

γ (x, t) = i
∫ t

0
〈uE(x, t ′)| ∂

∂ t ′ |uE(x, t ′)〉 dt ′. (2)

The eigenfunction uE(x, t) obeys the following eigenequation:

H uE(x, t) = EuE(x, t), (3)

where H is the Hamiltonian of the system. In the FM/I/FM tunnelling junction,

H = − h̄2

2m

d2

dx2
+ U(x) + h(x) · σ + V(x, t),

with

U(x) + h(x) · σ + V(x, t) =
{ h1 · σ, x � 0,

U + V (x, t), 0 < x < d,

h2 · σ, x � d,

}

where h1 and h2 are the molecular fields in the left and right ferromagnets, σ is the Pauli matrix,
U is the barrier height in the insulator, V (x, t) is the voltage drop applied in the insulator layer.

To proceed further,a semiclassical WKB approximation (up to first order) may be adopted;
then the eigenfunction uE(x, t) in the insulator barrier with a voltage drop V (x, t) can be
analytically written as

uE(x, t) = R(x, t) exp(iS(x, t)/h̄), (4)

with

R(x, t) = [2m(E − U − V (x, t))]−
1
4 (5)

and

S(x, t) =
∫ x √

2m(E − U − V (x ′, t)) dx ′. (6)

The above formulae hold only under the WKB approximation condition | dλ
dx | � 1, where

λ = h̄√
2m(E−U−V (x,t))

. Taking them together with equations (4)–(6), the geometric phase can
be further expressed as

γ (x, t) = i
∫ t

0

[
R(x, t ′)

∂

∂ t ′ R(x, t ′) +
i

h̄
R2(x, t ′)

∂

∂ t ′ S(x, t ′)
]

dt ′. (7)

This expression implies that the geometric phase is mainly dominated by the adiabatic time
variation of the voltage drop V (x, t).

Now we begin to write down the wavefunctions in the ferromagnets and insulator. Let us
consider a spin up incident wave with unit incident flux. Then, the wavefunction in the left
contact of the ferromagnet can be chosen as

�1↑ = exp(ik1↑x) + R↑ exp(−ik1↑x) (8)

and

�1↓ = R↓ exp(−ik1↓x), (9)
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where hk1↑,↓ = √
2m(E ∓ h1). In the insulator, we should consider the influence of the

geometric phase induced by the adiabatic variation of the voltage drop V (x, t) with time t ,
and the wavefunction must adopt the form of (1), namely

�2↑ = A↑ exp(iγ +(x, t))[2m(E − U − V (x, t))]−
1
4

× exp

(
i

h̄

∫ x √
2m(E − U − V (x ′, t)) dx ′

)

+ B↑ exp(iγ −(x, t))[2m(E − U − V (x, t))]−
1
4

× exp

(
− i

h̄

∫ x √
2m(E − U − V (x ′, t)) dx ′

)
(10)

and

�2↓ = A↓ exp(iγ +(x, t))[2m(E − U − V (x, t))]−
1
4

× exp

(
i

h̄

∫ x √
2m(E − U − V (x ′, t)) dx ′

)

+ B↓ exp(iγ −(x, t))[2m(E − U − V (x, t))]−
1
4

× exp

(
− i

h̄

∫ x √
2m(E − U − V (x ′, t)) dx ′

)
, (11)

where A↑,↓ and B↑,↓ are coefficients related to the incident wave and the reflected wave,
respectively. The geometric phase γ +(x, t) corresponding to the incident wave from left to
right is

γ +(x, t) = i
∫ t

0

[
R(x, t ′)

∂

∂ t ′ R(x, t ′) +
i

h̄
R2(x, t ′)

∂

∂ t ′ S(x, t ′)
]

dt ′, (12)

and the geometric phase γ −(x, t) related to the reflected wave in the insulator is

γ −(x, t) = i
∫ t

0

[
R(x, t ′)

∂

∂ t ′ R(x, t ′) − i

h̄
R2(x, t ′)

∂

∂ t ′ S(x, t ′)
]

dt ′. (13)

The wavefunction in the right ferromagnet just contains the transmitted wave

�3↑ = C↑ exp(ik3↑x) (14)

and

�3↓ = C↓ exp(ik3↓x), (15)

where hk3↑,↓ = √
2m(E ∓ h2). Both the wavefunctions �1↑,↓ and �3↑,↓ are for the

independent electrons, and �2↑,↓ includes the effect of the geometric phase.
To complete the above wavefunction, we must find the unknown coefficients

R↑,↓, A↑,↓, B↑,↓ and C↑,↓ by matching the wavefunctions and their derivatives at the interfaces
x = 0 and L. The wavefunctions require the following spinor transformation at x = 0:(

�1↑(x)

�1↓(x)

)
=

(
cos θ1 sin θ1

− sin θ1 cos θ1

) (
�2↑(x)

�2↓(x)

)
(16)

and similarly for the derivatives at x = 0, where θ1 is the angle between the molecular field h1

and the z axis. In the same manner, we can write down similar expressions for the wavefunction
and their derivatives at the interface x = L:(

�2↑(x)

�2↓(x)

)
=

(
cos θ2 sin θ2

− sin θ2 cos θ2

) (
�3↑(x)

�3↓(x)

)
.

Armed with the above wavefunctions �1↑,↓, �2↑,↓ and �3↑,↓, we can write down the
matching conditions in terms of the spinor transformation condition at the interface x = 0
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and L. They are eight linear equations in the unknown coefficients R↑,↓, A↑,↓, B↑,↓ and C↑,↓.
After some algebraic calculations, we can obtain analytically the coefficients appearing in the
wavefunctions. We collect these expressions for C↑ and C↓ in the appendix; they will be
used later to express the differential conductance, from which we can see the influence of the
geometric phase.

We proceed to study the differential conductance and the tunnelling magnetoresistance
(TMR) with the above-obtained analytical wavefunctions. It is well known that the probability
flux density in quantum mechanics is

f = 1

2m

(
�∗ h̄

i
∇� + c.c.

)
. (17)

From the above analytical expression for the wavefunction, we can express this flux analytically.
Then, along with some statistical considerations, the differential conductance can be obtained
analytically. For that purpose, we first express the transmission coefficient as

T (E) =
∑
s,s ′

Ts,s ′ , (18)

where s, s′ = ↑,↓ and

Ts,s ′ = ftran,s ′

finc,s
= k3s ′

k1s
|Cs ′ |2, (19)

where ftran,s ′ = h̄k3s′
m |Cs ′ |2 is the transmitted probability flux density and finc,s = h̄k1s

m is the
incident probability flux density. In a two-terminal measurement, the voltage and current are
measured through the same set of leads. For the single-channel case in a 1D system, the
conductance follows the Landauer formula [22]:

G(t) =
(

e2

h

)
T

=
(

e2

h

) ∑
s ′

k3s ′

k1↑
|Cs ′ |2. (20)

Since we only consider the spin up incident electron in our case, the sum in equation (20) does
not include the s index. The coefficients Cs ′ (s′ = ↑,↓) satisfying the boundary conditions at
the interface x = L are given in the appendix. Equation (20) now represents the conductance in
the presence of the geometric phase, which depends on time t . The time-averaged conductance
in one adiabatic cycle T of the voltage drop in the insulator can be defined as

G = 1

T

∫ T

0
G(t ′) dt ′. (21)

It is sufficient to average over the period because the voltage drop V (x, t) can be a periodic
function of time.

We next consider the tunnelling magnetoresistance which is defined as

TMR = G0 − Gπ

G0
, (22)

where Gπ and G0 are the conductance corresponding to the orientation angle θ2 of the molecular
field, taken as π and 0, respectively, and θ1 = 0; they have been averaged over t . With the
analytical expression for the differential conductance, we can demonstrate the influence of the
geometric phase on the TMR analytically.

When we vary the voltage drop with time t adiabatically, the differential conductance and
TMR will differ from the corresponding physical quantities in the case of a time independent
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voltage drop, because the geometric phase originating from the adiabatic procedure will have
an effect on the differential conductance and TMR, so in mesoscopic transport theory, one
should consider the influence of the geometric phase, which will help us to obtain the correct
theoretical results. If we set the geometric phases γ +(x, t) and γ −(x, t) appearing in the above
expressions to zero, which means dropping out the geometric phase, the conductance and TMR
are, obviously, different from the results obtained for the geometric phase. We may see their
difference directly in the analytical expressions. However, such a comparison just embodies
the difference in theoretical treatment; how to observe the influence of the geometric phase
experimentally is an interesting question, which we now try to address.

In fact, the geometric phase has an effect only via the probability flux density (17),
thereby leading to its influence on the differential conductance and TMR. Substituting the
wavefunction (1) including the geometric phase into the expression for the probability flux
density, we have

f (x, t) = 1

2m

{[
exp(iEt/h̄) exp(−iγ (x, t))u∗

E(x, t)
h̄

i
(exp(−iEt/h̄) exp(iγ (x, t))∇uE(x, t)

+ exp(−iEt/h̄)i∇γ (x, t) exp(iγ (x, t))uE(x, t))

]
+ c.c.

}
. (23)

The influence of the geometric phase comes from the second term and its conjugate. From
expression (7) for the geometric phase and equations (5) and (6), we see that the geometric
phase changes with x ; thus its gradient is non-zero only when the voltage drop in the insulator
layer varies with the space coordinate x . If the voltage drop in the insulator does not depend on
the coordinate x , the second term and its conjugate in (23) will vanish, and then the geometric
phase will not give rise to any observable effect on the differential conductance and TMR.
However, if we impose a voltage drop V (x, t) which not only depends on the coordinate x but
also varies adiabatically with t in the insulator of a FM/I/FM junction, we could observe the
change of the differential conductance and TMR induced by the geometric phase by comparing
the results obtained with the case in which the voltage drop takes a similar functional form but
is independent of x , say, V (t). In this way, one may experimentally examine the effect of the
geometric phase on an observably physical quantity. This is also an alternative way to verify
the existence of the geometric phase in a real physical system.

3. Numerical analysis

In our numerical calculations we shall take the width of the insulator layer to be 5.0 nm. For the
sake of simplicity, the magnitudes of the molecular fields in the FM layers are both assumed to
be 0.2 eV, and the barrier height U in the insulator is supposed to be 0.3 eV. The effective mass
is taken as the same for the ferromagnet and insulator. The voltage drop in the insulator layer
adopts the form of a cosine function V (x, t) = V0 cos(kx −ωt), where the variation with time
is adiabatic. The criterion of adiabaticity in this case is that the electron system has time to
adjust to the varying voltage drop; V0 is the amplitude of the voltage drop, k is the wavevector
and ω is the frequency. This voltage drop must be adiabatically turned on. We have plotted
them in figures 1(a) and (b) at different times and different amplitudes V0.

The results for the differential conductance G involving the geometric phase as a function
of the amplitude V0 of the voltage drop are presented in figure 2, where the angle θ1 of the
molecular field in the left ferromagnet is chosen as 0 and the angle θ2 in the right ferromagnet
is π/6. For comparison, we also plot the curve of the differential conductance G0 versus V0,
for which the geometric phase is missing (chosen simply as zero). It can be seen that the
geometric phase induced by the adiabatic variation of time t in the voltage drop V (x, t) has
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(a)

(b)

Figure 1. (a) The voltage drop in all regions of the structure at different times, where the amplitude
V0 is taken as 0.1 eV and the length of the insulator is 5 nm. The full curve corresponds to ωt = π/3,
while for the dashed curve and the dotted curve, ωt is taken as π and 5π/3, respectively. (b) The
voltage drop in all regions of the structure at different amplitudes V0 where ωt is taken as π/3. The
full line corresponds to V0 = 0.1 eV, while for the dashed curve and the dotted curve, V0 is taken
as 0.3 and 0.5 eV, respectively.

obvious effects on the differential conductance G. The conductance G0 varies slowly with V0

below 0.20 eV, but increases rapidly above 0.20 eV; however, the conductance G has a big dip
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Figure 2. The conductance G (unit e2/h) associated with the geometric phase and the conductance
G0 at which the geometric phase is dropped out versus the amplitude of the voltage drop V0, where
the length of the insulator is 5 nm, the angles θ1 and θ2 of the molecular fields in the left and right
ferromagnets are 0 and π/6, respectively, and the magnitudes of the molecular fields in the left
and right ferromagnets are both 0.3 eV. The dashed curve shows the conductance G0 and the solid
curve shows the conductance G .

at 0.35 eV, whose value is always smaller than G0, which is due to the interference effect of
the geometric phase. When we include the geometric phase in the wavefunction, the incident
wave and the reflected wave in the insulator bear different geometric phases; they will interfere
with each other, as characterized by the interference term in the expression for C↑,↓. It is this
property that makes the value of the differential conductance smaller.

When we change the angle θ2 of the molecular field in the right ferromagnet from π/6 to
π/4, the curve of the differential conductance G concerned with the geometric phase will be
altered, as shown in figure 3. For comparison, in the inset we also include the corresponding
curve for G0, for which the geometric phase is missing, where the angle θ2 is chosen as π/6
and π/4. This indicates that the differential conductance at θ2 = π/4 is smaller than that at
θ2 = π/6. This can be understood by noting that the incident electrons that we considered
are only those with spin up in the left ferromagnet, i.e., the incident electrons are assumed to
be perfectly polarized. Thus, the polarized electrons tunnel easily into the right ferromagnet
when the angle θ2 becomes smaller. G0 at θ2 = π/6 and π/4 increase with V0 gradually;
however, the differential conductance G becomes different when we consider the influence
of the geometric phase. Each curve of the conductance G at θ2 = π/4 and π/6 has a big
dip around 0.35 eV, whose value also becomes smaller than the differential conductance G0
in the absence of the geometric phase. This is due to the non-vanishing gradient term of the
geometric phase in the expression for the probability flux density (23).

In figure 4, the differential conductance G associated with the geometric phase is
compared for different magnitudes of the molecular fields h1 and h2 in the left and right
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Figure 3. The conductance G (unit e2/h) associated with the geometric phase versus V0 at different
angles of the molecular field, where the length of the insulator is 5 nm and the magnitudes of the
molecular fields in the left and right ferromagnets are both 0.3 eV. The dashed curve shows the
conductance G at θ2 = π/4 (denoted as G4) and the solid curve shows the conductance G at
θ2 = π/6 (denoted as G6). The inset shows the conductance G0, for which the geometric phase is
missing, the dashed curve shows the conductance G0 at θ2 = π/4 (denoted as G04) and the solid
curve shows the conductance G0 at θ2 = π/6 (denoted as G06).

ferromagnets. Such a comparison shows that the value of the conductance G increases when
both the molecular fields h1 and h2 are changed from 0.3 to 0.1 eV. This illustrates that
tunnelling becomes relatively easy if the molecular fields in the ferromagnets are smaller.
The inset shows the conductance G0 corresponding to the molecular fields taken as 0.3 eV
and 0.1 eV, respectively. We see that the differential conductance G becomes smaller under
the influence of the geometric phase; the curves of G have dips, while G0 increases with
V0 gradually, where the orientation angles of the molecular fields are chosen as θ1 = 0 and
θ2 = π/4.

Finally, we present the tunnelling magnetoresistance as a function of V0 in figure 5, where
we choose both molecular fields h1 and h2 to be 0.3 eV. For comparison, we also include the
curve of TMR0 for which the geometric phase has dropped out. It is seen that the TMR is obvi-
ously affected by the geometric phase. The TMR associated with the geometric phase has a big
dip around 0.45 eV, whose value is smaller than TMR0. The character of the TMR is dominated
by the differential conductance at θ2 = 0 and π according to the definition (22). In the inset
the corresponding TMR and TMR0 curves, where we change the magnitude of the molecular
fields h1 and h2 from 0.3 to 0.1 eV, are included. It indicates that the molecular fields play an
important role in determining the shape of the tunnelling magnetoresistance; meanwhile, the
value of the TMR in the molecular field 0.3 eV is larger than the TMR in the molecular field
0.1 eV, because in a smaller molecular field, the spin-polarized tunnelling becomes relatively
easy due to the spin dependent scattering of conduction electrons being weaker.
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Figure 4. The conductance G (unit e2/h) associated with the geometric phase versus V0 at
different magnitudes of the molecular field, where the length of the insulator is 5 nm and the angles
θ1 and θ2 of the molecular fields in the left and right ferromagnets are 0 and π/6, respectively.
The dashed curve shows the conductance G at h1 = h2 = 0.3 eV (denoted as G3) and the
solid curve shows the conductance G at h1 = h2 = 0.1 eV (denoted as G1). The inset shows the
conductance G0, for which the geometric phase is missing, the dashed curve shows the conductance
G0 at h1 = h2 = 0.3 eV (denoted as G03) and the solid curve shows the conductance G0 at
h1 = h2 = 0.1 eV (denoted as G01).

Figure 5. The TMR associated with the geometric phase and TMR0 for which the geometric
phase is dropped out versus V0, where the length of the insulator is 5 nm, the magnitudes of both
molecular fields in the left and right ferromagnets are 0.3 eV, the dashed line shows TMR0, the solid
curve shows TMR under the influence of the geometric phase. The inset corresponds to the case
of h1 = h2 = 0.1 eV, in which the dashed curve shows TMR0 and the solid line shows the TMR.
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4. Summary and discussion

In this paper, we have studied the effect of the geometric phase on the spin-polarized tunnelling
in a FM/I/FM junction. The effect is induced by the adiabatic variation of the time dependent
voltage drop with time t applied to the insulator barrier. In order to demonstrate clearly the
influence of the geometric phase on the physical quantities, we have numerically calculated the
differential conductance and the tunnelling magnetoresistance as a function of the amplitude of
the voltage drop, V0; the results are presented in figures 2–5. The variations of the conductance
and TMR with the angle θ2 and the magnitude of the molecular field are also discussed. The
comparison with the case in which the geometric phase is not considered indicates that the
effect of the geometric phase on the spin-polarized tunnelling transport is obvious, and should
not be ignored in the treatment. We have also suggested an experiment for confirming such
an effect, induced by the geometric phase. However, we would like to point out that there
exist simplifying assumptions in our model. First, the independent electron approximation is
adopted, and the electron–electron interactions are not considered because they would make the
equations hard to solve analytically. Second, the wavefunction in the insulator layer expressed
in the semiclassical approximation is only up to first order, and the higher order effects are
simply ignored for simplicity. Although our treatment has involved some assumptions as
mentioned above, we believe that our result captures the primary characteristics of the effects
induced by the geometric phase. How to extend our treatment to other complicated systems is
an open question, which we leave to future work.
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Appendix

According to boundary conditions which require the continuity of the wavefunctions and their
derivatives at the interfaces x = 0 and L, after some algebras, we can obtain the coefficients
appearing in the wavefunctions as

C↑ = exp(−ik3↑d)( f 11 ∗ R↑ + f 12 ∗ R↓ + f 13), (A.1)

and

C↓ = exp(−ik3↓d)( f 21 ∗ R↑ + f 22 ∗ R↓ + f 23), (A.2)

where f 1i (i = 1, 2, 3) and f 2i (i = 1, 2, 3) take the following forms:

f 1i = cos(θ2) exp(iγ +(d, t))[2m(E − V (d, t))]−
1
4 exp

(
i

h

∫ d

0

√
2m(E − V (x ′, t)) dx ′

)

× gi

( f+ − f−) exp(iγ +(0, t) − iγ −(0, t))
+ cos(θ2)

× exp(iγ −(d, t))[2m(E − V (d, t))]−
1
4

× exp

(
− i

h

∫ d

0

√
2m(E − V (x ′, t)) dx ′

)
hi − sin(θ2)

× exp(iγ +(d, t))[2m(E − V (d, t))]−
1
4
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× exp

(
i

h

∫ d

0

√
2m(E − V (x ′, t)) dx ′

)

× ki

( f+ − f−) exp(iγ +(0, t) − iγ −(0, t))
− sin(θ2)

× exp(iγ −(d, t))[2m(E − V (d, t))]−
1
4

× exp

(
− i

h

∫ d

0

√
2m(E − V (x ′, t)) dx ′

)
mi , (A.3)

and

f 2i = sin(θ2) exp(iγ +(d, t))[2m(E − V (d, t))]−
1
4 exp

(
i

h

∫ d

0

√
2m(E − V (x ′, t)) dx ′

)

× gi

( f+ − f−) exp(iγ +(0, t) − iγ −(0, t))
+ sin(θ2)

× exp(iγ −(d, t))[2m(E − V (d, t))]−
1
4

× exp

(
− i

h

∫ d

0

√
2m(E − V (x ′, t)) dx ′

)
hi + cos(θ2)

× exp(iγ +(d, t))[2m(E − V (d, t))]−
1
4

× exp

(
i

h

∫ d

0

√
2m(E − V (x ′, t)) dx ′

)

× ki

( f+ − f−) exp(iγ +(0, t) − iγ −(0, t))
+ cos(θ2)

× exp(iγ −(d, t))[2m(E − V (d, t))]−
1
4

× exp

(
− i

h

∫ d

0

√
2m(E − V (x ′, t)) dx ′

)
mi , (A.4)

with

f± = iγ ±′
(0, t) exp(iγ ±(0, t))[2m(E − V (0, t))]−

1
4 +

m

2
exp(iγ ±(0, t))

× [2m(E − V (0, t))]−
5
4 V ′(0, t) ± i

h̄
exp(iγ ±(0, t))[2m(E − V (0, t))]

1
4 ,

(A.5)

and

g1 = −i cos(θ1)k1↑ − f− exp(−iγ −(0, t))[2m(E − V (0, t))]
1
4 cos(θ1), (A.6)

g2 = i sin(θ1)k1↓ − f− exp(−iγ −(0, t))[2m(E − V (0, t))]
1
4 sin(θ1), (A.7)

g3 = i cos(θ1)k1↑ − f− exp(−iγ −(0, t))[2m(E − V (0, t))]
1
4 cos(θ1), (A.8)

h1 = cos(θ1) exp(−iγ −(0, t))[2m(E − V (0, t))]
1
4 − g1

f+ − f−
, (A.9)

h2 = − sin(θ1) exp(−iγ −(0, t))[2m(E − V (0, t))]
1
4 − g2

f+ − f−
, (A.10)

h3 = cos(θ1) exp(−iγ −(0, t))[2m(E − V (0, t))]
1
4 − g3

f+ − f−
, (A.11)

k1 = −i sin(θ1)k1↑ − f− exp(−iγ −(0, t))[2m(E − V (0, t))]
1
4 , (A.12)

k2 = −i cos(θ1)k1↓ − f− exp(−iγ −(0, t))[2m(E − V (0, t))]
1
4 , (A.13)
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k3 = i sin(θ1)k1↑ − f− exp(−iγ −(0, t))[2m(E − V (0, t))]
1
4 , (A.14)

m1 = sin(θ1) exp(−iγ −(0, t))[2m(E − V (0, t))]
1
4 − k1

f+ − f−
, (A.15)

m2 = cos(θ1) exp(−iγ −(0, t))[2m(E − V (0, t))]
1
4 − k2

f+ − f−
, (A.16)

m3 = sin(θ1) exp(−iγ −(0, t))[2m(E − V (0, t))]
1
4 − k3

f+ − f−
. (A.17)

Meanwhile,

R↑ =
(

f 13 − f 33
ik3↑

) − R↓
(

f 12 − f 32
ik3↑

)
(

f 11 − f 31
ik3↑

) , (A.18)

R↓ =

(( f 43
ik3↓ − f 23

) −
((

f 13− f 43
ik3↑

)(
f 21− f 41

ik3↓

)(
f 11− f 31

ik3↑

)
))

((
f 22 − f 42

ik3↓

) −
(

f 21− f 41
ik3↓

)(
f 12− f 32

ik3↑

)(
f 11− f 31

ik3↑

)
) , (A.19)

where f 3i (i = 1, 2, 3) and f 4i (i = 1, 2, 3) are expressed as

f 3i = g+ cos(θ2)
gi

( f+ − f−) exp(iγ +(0, t) − iγ −(0, t))
+ g− cos(θ2)hi

− g+ sin(θ2)
ki

( f+ − f−) exp(iγ +(0, t) − iγ −(0, t))
− g− sin(θ2)mi , (A.20)

f 4i = g+ sin(θ2)
gi

( f+ − f−) exp(iγ +(0, t) − iγ −(0, t))
+ g− sin(θ2)hi

+ g+ cos(θ2)
ki

( f+ − f−) exp(iγ +(0, t) − iγ −(0, t))
+ g− cos(θ2)mi , (A.21)

with

g± = iγ ±′
(d, t) exp(iγ ±(d, t))[2m(E − V (d, t))]−

1
4 exp

(
± i

h

∫ d

0

√
2m(E − V (x ′, t)) dx ′

)

+
m

2
exp(iγ ±(d, t))[2m(E − V (d, t))]−

5
4 V ′(d, t)

× exp

(
± i

h

∫ d

0

√
2m(E − V (x ′, t)) dx ′

)

− i

h̄
exp(iγ ±(d, t))[2m(E − V (d, t))]

1
4

× exp

(
± i

h

∫ d

0

√
2m(E − V (x ′, t)) dx ′

)
. (A.22)

We have now obtained all coefficients needed in the expressions for the differential conductance
and TMR.
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